A AR = »
) BRCR R 2 — L N

" Information Technology Centes, The University of Tokyo THE UNIVERSITY OF TOKYO

Flat MPI vs. Hybrid: Evaluation of
Parallel Programming Models for
Preconditioned Iterative Solvers on

“T2K Open Supercomputer”

Kengo NAKAJIMA

Information Technology Center
The University of Tokyo

Second International Workshop on Parallel Programming Models and Systems Software
for High-End Computing (P2S2), September 22, 2009, Vienna

to be held in conjunction with ICPP-09: The 38th International Conference on Parallel Processing




Topics of this Study

Preconditioned lterative Sparse Matrix Solvers for FEM
Applications

T2K Open Supercomputer (Tokyo) (T2K/Tokyo)

Hybrid vs. Flat MPI Parallel Programming Models

Optimization of Hybrid Parallel Programming Models
— NUMA Control
— First Touch
— Further Reordering of Data




Background
— Why Hybrid ?
Target Application
— Overview

— HID
— Reordering

Preliminary Results
Remarks




pP2S2

T2K/Tokyo (1/2)

e “T2K Open Supercomputer Alliance”
— http://www.open-supercomputer.org/

— Tsukuba, Tokyo, Kyoto

° “TZK Qpen S.UperCOmpUter University of Tokyo
(TOdaI Comblned Cluster)” # nodes = 952 Rpeak = 140.1TFlops Memory = 31TB
— by Hitachi \
— op. started June 2008

isec interconnection for
128 nodes = 640GB/s

— Total 952 nodes (15,232 cores), “me-io: | ommpmm
141 TFLOPS peak N
» Quad-core Opteron (Barcelona) |

isection interconnection for

— 27th in TOP500 (NOV 2008)
(fastest in Japan at that time)



pP2S2

T2K/Tokyo (2/2)

AMD Quad-core Opteron
(Barcelona) 2.3GHz

4 “sockets” per node
— 16 cores/node

Multi-core, multi-socket
system

cc-NUMA architecture

— careful configuration needed
 local data ~ local memory

— To reduce memory traffic in
the system, it is important to
keep the data close to the
cores that will work with the
data (e.g. NUMA control).

L1

L1

L1

L1

Core

Core

Core

Core

L1

L1 | L1

L1

i

Core

Core|Core

Core

Core

Core

Core

Core

H

L1

L1

L1

L1

Core

Core|Core

Core

L1

L1 | L1

L1




pP2S2

Flat MPI vs. Hybrid
Flat-MPI:Each PE -> Independent

Hybrid: Hierarchal Structure

§ W core
g g coe
g ] o

core




pP2S2

Flat MPI vs. Hybrid

 Performance is determined by various parameters

e Hardware
— core architecture itself
— peak performance
— memory bandwidth, latency
— network bandwidth, latency
— their balance

e Software
— types: memory or network/communication bound
— problem size



pP2S2

Sparse Matrix Solvers by FEM, FDM ...

for (i=0; i<N; i++) { {
for (k=Index(i-1); k<Index(i); k++
« Memory-Bound | YHI= YLD+ K fdKCicenik] )

— Indirect accesses )

— Hybrid (OpenMP) is more memory-bound

e Latency-Bound for Parallel Computations
— comm.’s occurs only at domain boundaries
— small amount of messages

 Exa-scale Systems
— O(108) cores
— Communication Overhead by MPI Latency
for > 108-way MPI’s

— Expectations for Hybrid
e 1/16 MPI processes for T2K/Tokyo




pP2S2

Weak Scaling Results on ES
GeoFEM Benchmarks [KN 2003]

« Generally speaking, hybrid is better for large
number of nodes

» especially for small problem size per node
— “less” memory bound

4.00
® Flat MPI: Large Large
L | A Flat MPI: Small ‘ Flat MPI
3.00 @ Hybrid: Large ]
0 [ | A Hybrid: Small . Hybrld
§ 2.00
= Small
1.00 A Flat MPI
A Hybrid
000 LS st s i et

768
PE#



Background
— Why Hybrid ?
Target Application
— Overview

— HID
— Reordering

Preliminary Results
Remarks




pP2S2 11

Target Application

e 3D Elastic Problems with Heterogeneous Material Property
— E ;1 =103, E,..=103, v=0.25

e generated by “sequential Gauss” algorithm for geo-statistics [Deutsch &
Journel, 1998]

— 1283 tri-linear hexahedral elements, 6,291,456 DOF
« Strong Scaling

¢ (SGS+CQG) lterative Solvers

— Symmetric Gauss-Seidel
— HID-based domain decomposition

« T2K/Tokyo
— 512 cores (32 nodes)

« FORTARN9O0 (Hitachi) + MPI
— Flat MPI, Hybrid (4x4, 8x2, 16x1)




pP2S2

HID: Hierarchical Interface
Decomposition [Henon & Saad 2007]

o Multilevel Domain Decomposition
— Extension of Nested Dissection

« Non-overlapped Approach: Connectors, Separators

o Suitable for Parallel Preconditioning Method
A
0
R
>@< Level-1
X X @ \v4 X \ J
L AN N ‘ :
N\ Pas @K P 2\ 0
NP NP Y PN Level-2
—O—L >@< level-1: @
| A9 level-2: @
> —0O—C \@/ |§xg|_4: Level-4 i >3




pP2S2 13

Parallel Preconditioned Iterative Solvers

on an SMP/Multicore node by OpenMP
« DAXPY, SMVP, Dot Products
— Easy
e Factorization, Forward/Backward Substitutions In
Preconditioning Processes
— Global dependency
— Reordering for parallelism required: forming independent sets
— Multicolor Ordering (MC), Reverse-Cuthill-Mckee (RCM)
— Works on “Earth Simulator” [KN 2002,2003]
» both for parallel/vector performance
e CM-RCM (Cyclic Multi Coloring + RCM)
— robust and efficient
— elements on each color are independent



Ordering Methods

OO0 e
0000800 0090000

90 ee 00WOOOE
OO0 WOOLOO6

oo
RCM CM-RCM (Color#=4)
Reverse Cuthill-Mckee Cyclic MC + RCM

A--4-0-4-4-4-

OO
DOV

MC (Color#=4)
Multicoloring



pP2S2

lterations

Effect of Ordering Methods on
Convergence

90
] A, A MC

® CM-RCM

(0]
o

~
o

(o))
o

al
o

1 10 100 1000

15



pP2S2 16

Re-Ordering by CM-RCM
5 colors, 8 threads

Initial Vector

Coloring color=1 color=2 color=3 color=4 color=5
(5 colors)
+QOrdering *

color=1 color=2 color=3 color=4 color=5

1(2(3|4|5(6|7|8| |1|2|3|4|5|6|7(8| |1|2|3|4|5|6|7|8| [1|{2(3|4|5|6|7|8| |1|2|3|4|5|6|7|8

Elements in each color are independent, therefore parallel processing
IS possible. => divided into OpenMP threads (8 threads in this case)

Because all arrays are numbered according to “color”,
discontinuous memory access may happen on each thread.



Background
— Why Hybrid ?
Target Application
— Overview

— HID
— Reordering

Preliminary Results
Remarks




Flat MPI, Hybrid (4x4, 8x2, 16x1)

Fkﬂhﬂpllti!jfi!iIIIIIIIIIIIIIIIIIIIIIIII
Hybrid

- BN NEEE/INER
Hybrid 0 1 2 3

sl INEE EEER RRREREER

Hybrid 0 1 2 3
e lHEEEREN RREREEER




pP2S2

CASES for Evaluation

Focused on optimization of HB8x2, HB16x1

CASE-1
— Initial case (CM-RCM)
— for evaluation of NUMA control effect
 specifies local core-memory configulation

CASE-2 (Hybrid only)

— First-Touch
CASE-3 (Hybrid only)

— Further Data Reordering + First-Touch
NUMA policy (0-5) for each case

19



pP2S2 20

Results of CASE-1, 32 nodes/512cores
computation time for linear solvers
Flat MPI (Policy O

Policy Command line switches LSoT _
ID i \ W policy 0
0 [ nocommand line switches S [ 0 best (policy 2)
]
0 ——cpunodebind=$SOCKET g 100 T
——interleave=all 2 X
aQ
—-cpunodebind=$SOCKET v X
2 - Z 050 \ -
—-—interleave=$SOCKET Fe Y
)
3 —-cpunodebind=$SOCKET o
—-membind=$SOCKET
0.00 1
4 ——cpunodebi1nd=$SOCKET FlatMPI  HB 4x4 HB 8x2  HB 16x1
--localalloc Parallel Programming Models
5 --localalloc Method Iterations Best Policy
CASE-1
Flat MPI 1264 2
HB 4x4 1261 2
_ _ HB 8x2 1216 2
e.g. mpirun —np 64 —cpunodebind 0,1,2,3 a.out B 16x1 Toad 5




pP2S2 21

First Touch Data Placement
ref. “Patterns for Parallel Programming” Mattson, T.G. et al.

To reduce memory traffic in the system, it is important to keep the
data close to the PEs that will work with the data (e.g. NUMA control).

On NUMA computers, this corresponds to making sure the pages of
memory are allocated and “owned” by the PEs that will be working
with the data contained in the page.

The most common NUMA page-placement algorithm is the
“first touch” algorithm, in which the PE first referencing a region of
memory will have the page holding that memory assigned to it.

A very common technique in OpenMP program is to initialize
data in parallel using the same loop schedule as will be used later
In the computations.



pP2S2

22

Further Re-Ordering for Continuous
Memory Access

5 colors, 8 threads

Initial Vector

Coloring color=1 color=2 color=3 color=4 color=5
(5 colors)
+Ordering *
color=1 color=2 color=3 color=4 color=5
1234567. 1234567. 234567. 234567. 1234567I
1[1]1[1]1]|2]2|2[2]2] [3]3[3|3]3] |4]4]4|4]4| [5]5]5]5]5) |6|6]6|6]6| 7] 7|7| 7|7 | ElEIEIEIE




pP2S2 23

Improvement: CASE-1 = CASE-3

Normalized by the Best Performance of Flat MPI

32nodes, 512cores
196,608 DOF/node

1.50

O Initial

m CASE-1
B CASE-2
O CASE-3

CASE-1: NUMA control
CASE-2: + F.T.
CASE-3: + Further Reordering

1.00

X

0.50

Relative Performance

0.00
Flat MPI HB 4x4 HB 8x2 HB 16x1

Parallel Programming Models



pP2S2

Improvement: CASE-1 = CASE-3

Normalized by the Best Performance of Flat MPI

32nodes, 512cores
196,608 DOF/node

8nodes, 128cores

786,432 DOF/node

1.50 1.50 —
- O Initial - O Initial
- m CASE-1 5 m CASE-1
Q 5 B CASE-2 () i B CASE-2
S I 0 CASE-3 I 0 CASE-3
£ = 1)
XS] [ o i
) I o I
o o
o i ()
2 050 | | = 050 |
< s ©
o ©
a4 o
0.00 0.00
Flat MPI HB 4x4 HB 8x2 HB 16x1 Flat MPI HB 4x4 HB 8x2 HB 16x1

Parallel Programming Models Parallel Programming Models



pP2S2

Strong Scalability (Best Cases)

32~512 cores
Performance of Flat MPI with 32 cores= 32.0

500
- | — ideal 4
" @ Elat MPI
400 T 5 HB axa
- A HBBX2 <
5 200 [ ¢ HB16x1 %
Es [ .
q) L
(% 200 Q
i /ﬂ/? O
100 m/m/
O e T
0 128 256 384 512

25



pP2S2

Relative Performance for

Strong Scaling (Best Cases)

32~512 cores
Normalized by BEST Flat MPI at each core#

125 r

- HB 4x4
OHB 8x2 |
- HB 16x1

Relative Performangg

o
N
&

0.00 L
32 64 128 192 256 384 512

core#



Background
— Why Hybrid ?
Target Application
— Overview

— HID
— Reordering

Preliminary Results
Remarks




pP2S2

Summary & Future Works

HID for lll-Conditioned Problems on T2K/Tokyo
— Hybrid/Flat MPIl, CM-RCM reordering

Hybic
Data

re-ora

4x4 and Flat MPI are competitive

ocality and continuous memory access by (further
ering + F.T.) provide significant improvement on

Hybrid 8x2/16x1.

Performance of Hybrid is improved when,
— many cores, smaller problem size/core (strong scaling)

Future Works
— Higher-order of Fill-ins: BILU(p)
— Extension to Multigrid-type Solvers/Preconditioning
— Considering Page-Size for Optimizaion
— Sophisticated Models for Performance Prediction/Evaluation

28



P2S2

Summary & Future Works (cont.)

e Improvement of Flat MPI

— Current “Flat MPI” is not
really flat

— Socket, Node, Node-to-
Node

 Extension to GPGPU

L1

L1

L1

L1

L1

L1

L1

L1

Core

Core

Core

Core

Core

Core

Core

Core

i

Core

Core

Core

Core

K

Core

Core

Core

Core

L1

L1

L1

L1

L1

L1

L1

L1




pP2S2

GPGPU Community

Initial Vector

e Coalesced Access
(better one)

e Seduential Access

\

30

Coloring color=1 color=2 color=3 color=4 color=5
(5 colors)
+Ordering *
color=1 color=2 color=3 color=4 color=5
1|2|3|4/5|6|7|8| |1|2|3|4|5|6|7|8| |1|2(3|4|5|6|7|8| |1(2|3|4|5|6|7|8| [1|2|3|4|5|6|7|8
Coloring color=1 color=2 color=3 color=4 color=5
(5 colors)
+QOrdering *
color=1 color=2 color=3 color=4 color=5
1[2]3l4[s]6|7 [ |1|2]3]4[s]6|7 [ |1|2[3]4[s]6|7 [ |1]2]3]4[s]6|7 [ |1]2[3l4[s]6|7 |
\ /
1[1]1)1[1][2]2]2]2]2|[3]3]3[3]3] [4]4]4]4]4] [5]5]5]5]5] |6 |6]6 6 6] [ 7]7]7] 7|7 | ISR






